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SUMMARY

The particulate suspension �ow in a channel whose walls describe a travelling wave motion is exam-
ined numerically. A perturbation method is employed and the primitive variables are expanded in a
series with the wall amplitude as the perturbation parameter. The boundary conditions are applied at
the mean surface of the channel and the �rst-order perturbation quantities are numerically determined
by solving the governing system of ordinary di�erential equations by shooting technique. The present
approach does not impose any restriction on the Reynolds number of the �ow and the wave number
and frequency of the wavy-walled channel, although it is limited by the linear analysis. The wall shear
stress and the positions of �ow separation and reattachment points are computed and the in�uence of the
volume fraction density of the particles is examined. The variations of velocity and pressure of the par-
ticulate suspension �ow with frequency of excitation are also presented. Copyright ? 2005 John Wiley
& Sons, Ltd.

KEY WORDS: particulate suspension �ow; wavy-walled channel; peristaltic motion; shooting
technique

1. INTRODUCTION

Flow over wavy boundaries occurs in a variety of physical and biological systems and the
physical processes involve interactions between the �ow �eld and the wavy surfaces which
produce signi�cant changes in the transport of mass, momentum and energy. In some
industrial processes, it is sometimes required to produce a �ow through a duct without using
internal moving parts. Peristaltic transport is one of the methods which involves �uid transfer
and avoids internal moving parts and it employs a duct with �exible walls and consists of
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vibrating the walls so as to generate progressive transverse de�ection waves. In physiological
applications, �ow in a channel whose walls are subjected to a wave-like forced excitation has
been used to transport blood within small blood vessels or arti�cial blood devices. In bio-�uid
mechanics, �ow through wavy passages involving peristaltic motion �nds its application in
the understanding of mechanisms for localization of atherosclerotic lesions. Also, the �ow
through wavy boundaries give rise to favourable and adverse pressure gradients due to the
surface undulations present in the �ow con�guration and hence, the resulting �ow may be
treated as a mechanical system not in equilibrium and which is amenable to control.
Various studies on the �ow of Newtonian and non-Newtonian �uids through channels and

tubes whose walls are subjected to a wave-like forced excitation (experimental, theoretical
as well as computational) have been carried out and these investigations have explored a
variety of relevant information [1–9]. The peristaltic motion of a mixture of �uid and solid
particles has also been theoretically examined, e.g. by Hung and Brown [10] and Kaimal [11],
Srivastava and Srivastava [12] and Misra and Pandey [13]. These studies on peristaltic �ows
of particulate suspension or two-phase model have either neglected inertia or assumed very
slow motion, low frequency and small amplitudes. On the other hand, the present numerical
study on the particulate suspension �ow through a channel whose walls are subjected to a
wave-like forced excitation, has been carried out by including inertia as well as pressure
gradient terms. No approximation has been made except for the linerization of the governing
equations of particulate suspension model.
The problem of �ow of a particulate suspension has attracted the attention of several in-

vestigators due to the variety of dynamical phenomena exhibited by it and due to its many
applications in industry. The importance of the particulate suspension �ow=two-phase �ow
has led to the development of several theories which are based mainly on either Eulerian
approach or the Lagrangian approach. The former treats both phases as continua with inter-
facial interactions such as drag and heat transfer [14–16]. The latter approach treats only the
�uid as a continuum while the particle phase is governed by the kinetic theory [17, 18]. Both
the approaches have been successfully applied for the analysis and solution of two-phase �ow
situations. In the present investigation, a particulate suspension �ow through a wavy channel
is considered on the basis of a continuum model of a suspension of solid particles in a carrier
�uid [15, 19–21]. The constituents are treated as superimposed continua and are described by
means of �eld variables and balance equations, obtained through an averaging procedure over
regions containing su�ciently large numbers of solid particles. Separate mass and momentum
balance equations for each constituent are written and the momentum equations for each phase
are coupled through a �uid–solid interaction force, which is taken to be the classical Stokes
drag on a single spherical particle and modi�ed by a factor, accounting for a �nite volume
fraction of particles, obtained by Tam [22]. The continuum model of particulate suspension
�ow in the present study is thus formulated using constitutive equations that are representa-
tive of the work of several previous investigators and that are used by several authors such
as Nayfeh [23], Marble [14], Chamkha [24, 25], Jean and Peddieson [26], Apazidis [27] and
many of the references appearing therein.
The purpose of the present work is to obtain a numerical solution of a simple model

describing the particulate suspension �ow in a channel whose walls are subjected to a wave-
like forced excitation. It is felt that a good understanding of models of this kind is necessary
before proceeding to more complex types. The present investigation on particulate suspension
�ow is potentially important and relevant in regard to bio-�uid transport by peristalsis of
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muscular contractions in body organs where �uids behave like particle–�uid mixtures, namely
chyme in small intestine and blood suspension in arteriole.

2. MATHEMATICAL FORMULATION

A two-dimensional in�nite channel of mean width 2d (Figure 1), �lled with a mixture of
small spherical rigid particles in an incompressible Newtonian �uid is considered. The walls
of the channel described by y′= −d+�′(x; t) and y′=d−�′(x; t) are subjected to a travelling
wave type of excitation. The equations governing conservation of mass and linear momentum
for continuum approach can be expressed as [12, 21, 23, 28, 29]
Fluid phase:
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Figure 1. Wavy channel �ow con�guration.
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where x′; y′ are cartesian coordinates with x′ measured in the direction of wave propagation
and y′ measured in the direction normal to the mean position of the channel walls (Figure 1),
(u′
f ; v

′
f ) denotes �uid-phase velocities, (u

′
p; v

′
p) denotes particulate-phase velocities, �f ; �p, the

actual densities of the materials constituting �uid and particulate phases, respectively, (1−C)�f
the �uid density, C�p, the particulate-phase density, p′ denotes the pressure, C denotes the
volume fraction density of the particles, �s(C) is the particle–�uid mixture viscosity and S is
the drag coe�cient of the interaction for the force exerted by one phase on the other.
It should be pointed out here that the volume fraction density C of the particles has been

chosen as a constant. This is a good assumption for �ows with low concentration of small
particles, e.g. slow �ltration. This assumption is necessary to obtain closed form solutions
that can be used to check the numerical solutions of the transient problem. There are more
elaborate constitutive theories which predict non-uniform particle volume fraction [30, 31].
But obviously, in these cases, it is not possible to obtain exact solutions.
As the concentration of the particle has been considered small, the �eld interaction between

the particles can be neglected. The particle phase viscous e�ects arise from additional shearing
due to high particulate concentrations in solid–�uid system. Physically, as the �uid viscosity
represents �uid–�uid interaction, the particle viscosity can be thought of as representing the
particle–particle interaction. Mathematically, since the particle cloud is not a continuous sys-
tem, a continuum description of such a system involves averages over small volume elements
and=or small time intervals. The actual variables associated with individual particle will not
exactly correspond to those averages. This gives rise to the possibility of transfer of mass,
momentum and energy which are not accounted for by the average variables [21, 32]. The
resulting momentum transfer can be modelled as viscous in nature. A possible application of
this type of �ow is in powder industry. In the present investigation, however, the di�usivity
term, which models the e�ects of particle–particle impacts due to the Brownian motion has
been neglected due to the assumption that the concentration of the particles is small. It is
worth mentioning here that the e�ects of Brownian motion have been considered by others
including Batchelor [33, 34].
Since the particle-phase Reynolds number is assumed to be small, other interaction forces

such as the virtual mass force [35], the shear lift force [36] and the spin lift force [37] have
been neglected compared to the Stokes’ drag forces [27]. It should be noted here that the
e�ects of earth’s gravity have been neglected. Soo [38] has shown that, compared with the
e�ects of friction, gravity e�ects in pipe �ow of a suspension are very small and therefore
can be neglected.
The expression for the drag coe�cient for the present problem has been selected as

S =
9
2
�0
a2
�′(C)

�′(C) =
4 + 3(8C − 3C2)1=2 + 3C

(2− 3C)2
(7)
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where �0 is the �uid viscosity, and ‘a’ is the radius of the particle. The classical Stokes’
drag for small particle Reynolds number has been represented by relation (7) and it accounts
for the �nite particulate fractional volume through the function �′(C), obtained by Tam [22].
Although there are several empirical relations connecting the viscosity of the suspension,
particle concentration and viscosity of the suspending medium, in the present investigation,
the relation

�s(C) =
�0

1− qC
q=0:070 exp

[
2:49C +

1107
T

exp(−1:69C)
] (8)

where T is the absolute temperature (K), suggested by Charm and Kurland [39] has been
used. The viscosity of suspension predicted by this formula has been found to be reasonably
accurate up to C=0:6. Charm and Kurland [39] have tested Equation (8) with a cone and
plate viscometer and found it to be in agreement within 10 per cent for blood suspension.
The boundary conditions are no-slip at the walls and impermeability of the walls of the

channel. They are given by

u′
f = 0; v′f =

@�′

@t′
; v′p =

@�′

@t′
on y′= ± d± �′ (9)

It may be pointed out that in the absence of the exact form of the boundary conditions to
be satis�ed by a particle at a surface and the experimental fact that a particle experiences a
certain amount of slip at a boundary, the boundary condition given by (9) have been chosen.
These boundary conditions seem to give a reasonable solution without any di�culty [16].
Taking reference quantities for length, velocity and pressure as ‘d’, the mean semi-channel

height, ‘U’, the mean-centre line velocity and �fU 2, respectively, the dimensionless variables
and parameters are
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The system of Equations (1)–(6) and (9) can now be expressed as
Fluid phase:
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Boundary condition:

uf = 0; vf =
@�
@t
; vp =

@�
@t

on y= ± 1± � (17)

The wall motion can be speci�ed through the following expressions:

yupperwall =+1− � (Real part of [exp i(�x −!t)]) (18)

ylowerwall =−1 + � (Real part of [exp i(�x −!t)]) (19)

which represent a wave travelling in the plane of the wall around the position y= ± 1 with
amplitude �, wave number vector (�; 0; 0) and frequency !. The wave number of the wavy
channel con�guration for both top and bottom walls of the channel is same and has been
considered to be small, namely, wavelength has been taken to be long as compared to the
amplitude, although no such limitation has been imposed by the formulation or the solution
technique. When the wave number of the wall is prescribed, then the �ow through the channel
becomes spatially periodic. When the walls of the channel are subjected to wave excitation,
then its circular frequency ! is prescribed. This renders the �ow periodic in both temporal
and spatial aspects. The amplitude of the wavy motion � is the same for both top and bottom
walls of the channel and is considered small as compared to the width of the channel. It may
be pointed out that the case of zero excitation corresponds to a rigid wavy boundary. In the
form given by (18) and (19), the waves of the upper and lower walls are in anti-phase, so
that at any instant of time, the local channel width expands and contracts around the value 2d.
In what follows, the �ow of a particulate suspension through the channel subjected to wave

excitation at the walls has been examined. For small amplitude of wavy-wall excitation, the
solution has been sought as a perturbation from the velocity pro�le of the fully developed
channel �ow. It is worth mentioning here that, correctors or perturbation parts must be intro-
duced in order to correct the homogeneous boundary conditions on the rough wall which are
no longer satis�ed by the basic part [40, 41]. To linear approximation in �, the �ow quantities
can be expressed as

F = �F(y) + �F̃(x; y; t) +O(�2) (20)
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where F can be uf ; vf ; up or vp; �F is the solution for the basic �ow and F̃ is for perturbation
part. Substituting (20) in (11)–(16) and collecting the terms of di�erent orders in �, say up
to �1, the equations for the basic �ow and perturbed quantities can be obtained. It is important
to note that di�erent formal asymptotic expansion must be used to treat di�erent regimes. The
equations determining the basic �ow are

−(1− C)Re@ �p
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+
@2 �uf
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+ CM ( �up − �uf ) = 0

−Re@ �p
@x
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The solution of Equation (21) using the boundary condition �uf (±1)=0 is
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M

)

�p=−2k x
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where k= −Re=2@p=@x is the Poiseuille �ow parameter. It may be noted that the e�ect of the
particles on the �uid velocity pro�le is to cause an increase in the viscosity, that is, the �uid
viscosity �0 is replaced by suspension viscosity �s =�0=(1−qC) and that for a given pressure
di�erence, less �uid will �ow through the channel. Further the particles lead the �uid by
a relative velocity proportional to 1=M@p=@x.
The perturbed quantities can be obtained from
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+CM (ṽp − ṽf ) (24)

@
@x
[(1− C)ũf ] + @
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@ṽp
@t
+ �up

@ṽp
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To solve Equations (23)–(28), the form of solution, of �1 order, can be assumed as

ũf ′ = 1
2[ûf (y) exp{i(�x −!t)}+ û∗

f (y) exp{−i(�x −!t)}]
ṽf = 1

2 v̂f (y) exp{i(�x −!t)}+ v̂∗f (y) exp{−i(�x −!t)}]
ũp = 1

2 [ûp(y) exp{i(�x −!t)}+ û∗
p(y) exp{−i(�x −!t)}]

ṽp = 1
2 [v̂p(y) exp{i(�x −!t)}+ v̂∗p(y) exp{−i(�x −!t)}]

p̃= 1
2[p̂(y) exp{i(�x −!t)}+ p̂∗(y) exp{−i(�x −!t)}]

(29)

which show that the solution is periodic in x- and t-directions and that the amplitude functions
vary only in the y-direction. û and p̂ are the complex amplitude functions for velocities and
pressure, respectively, the superscript asterisk denotes the complex conjugate. Substituting
(29) in (23)–(28) and using (22), the following linearized equations are obtained for the
amplitude functions:
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+
@2ûf
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�p
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Transferring the boundary conditions in (17) to the mean position of the wall, using
the standard methods [42], the boundary conditions for the amplitude functions can be
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obtained as

ũf (±1) =−2 (Real part of [exp i(�x −!t)])
ṽf (±1) =Real part of [±i! exp i(�x −!t)]
ṽp(±1) = 0

(36)

The application of the boundary conditions at the mean surface has been considered appro-
priate so far as the amplitude of the wall is considered to be small and the wavelength is
large.
The linearized boundary conditions are given by

ũf (±1)= − 2; ṽf (±1)= ± iw; ṽp(±1)= ± iw (37)

For rigid wavy wall, ! is zero and hence

ṽf (±1) = 0; ṽp(±1)=0 (38)

The determination of the numerical solution of the particulate suspension �ow through the
wavy channel reduces to solving Equations (30)–(35) satisfying the boundary conditions (37).
The numerical solution has been obtained by shooting technique and the results are presented
in the next section. It may be pointed out that except for the linearization of the governing
equations of the particulate suspension �ow, no other approximation has been used in the
derivation.

3. NUMERICAL SOLUTION

To solve numerically, the linearized equations (30)–(35) along with the inhomogeneous
boundary conditions (37), the equations are expressed as a system of six �rst-order ordi-
nary di�erential equations. De�ning the variables zj, j=1; 2; : : : ; 6 as

z1 = ûf ; z2 = ˙̂uf ; z3 = v̂f ; z4 = p̂; z5 = ûp; z6 = v̂p (39)

where the dot above the variable represents di�erentiation with respect to y, Equations
(30)–(35) can be written as

ż1 = z2

ż2 = (1− C)Re[−i!z1 + i�(1− y2)z1 − 2yz3] + (1− C)Re i�z4 − (i�)2z1 − CM (z5 − z1)
ż3 =−i�z1

ż4 =
1

(1− C)Re [(i�)
2z3 − (i�)z2 + CM (z6 − z3)] + i!z3 − (i�)(1− y2)z3

ż5 =
(�f =�p)M [z2 − (i�)(z3 − z6)]− Re[−2z6 − �!z6 − (i�)2(1− y2 + 2=M)z6]

Re[−i!+ i�(1− y2 + 2=M)] + (�f =�p)M
ż6 =−i�z5

(40)
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Figure 2. Comparison of amplitude function of the perturbed quantities for
the wavy channel �ow Re = 150, �=0:738, �=0:1: –◦–, Selvarajan [43];

–|–, present method applied to Newtonian model.

Equation (40) with boundary conditions (37) have been solved by shooting technique. The
results obtained for the case of viscous incompressible �uid by the present method are com-
pared (Figure 2) with those presented by Selvarajan [43] for Newtonian �ow through wavy
channels. They employ �nite di�erence method of Scott and Watts [44] and spectral colloca-
tion method of Canuto et al. [45]. The close agreement gives the con�dence in the applicability
of the method in the determination of the particulate suspension �ow through wavy-walled
channels.

3.1. Computational results for particulate suspension �ow through rigid wavy channel

The �ow through rigid wavy channel described by the system of ordinary di�erential
equations (40) subject to the boundary conditions (37) with !=0 has been solved by
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shooting technique using MATLAB subroutine which solves two-point boundary-value prob-
lems (BVPS) for ordinary di�erential equations by collocation method. It integrates a system
of ordinary di�erential equations of the form y′=f(x; y) on the interval [a; b], subject to
general two-point boundary conditions and produces a solution that is continuous on [a; b]
and has a continuous �rst derivative there. The resulting equations are solved by starting with
parameter values for which one can get a solution, and use it as a guess for the remaining
iterations. The processes are repeated until the solution converges. The values of parameters
have been taken as density ratio (�p=�f )= 2 and ratio of particle radius to half the width
of the channel (a=d)= 0:02, with the grid size of 281× 101. Following guidelines from
Selvarajan [43], trials were made with 51; 101; 181 and 281 grid lines along x-axis and
21; 41; 61; 81 and 101 grid lines along y-axis. The results are found to be grid independent
for 281× 101 size. Further re�nement of the grid did not produce signi�cant changes in the
result and therefore the results have been obtained with the above grid.
Computations are performed for the parameters of the rigid wavy-walled channel �ow with

Re=150; �=1 and !=0 for two values of the volume fraction density C of the particles
(0 and 0.5). The values of Re and � correspond to those of Selvarajan [43]. The amplitude
functions for the �ow in a wavy channel describing the �uid and particulate phase velocities
ûf ; v̂f ; ûp, and v̂p(ûf = ûfr+iû�; v̂f = v̂fr+iv̂�; ûp = ûpr+iûpi; v̂p = v̂pr+iv̂pi) are plotted in Figure 3.
It may be pointed out that the results presented for C=0 by the present numerical method
agree with those predicted by Selvarajan [43], correct to four decimal place accuracy. It is
seen that for the case with C=0:5, the peaks of ûfr ; v̂fr ; û�, and v̂� are generally slightly lower
than those for C=0. The distributions of ûpr ; v̂pr ; ûpi, and v̂pi with y are same as those for
ûfr ; v̂fr ; û�, and v̂�, respectively. This is a consequence of the assumption of uniform volume
fraction density of small particles. Figure 4 shows the variation of perturbed velocities for
C=0:5. Since variations of ûfr ; v̂fr and others are similar for C=0 and 0:5, the plots of
ũf ; ṽf for C=0 are not shown. From the results of the amplitude functions, the various �ow
quantities have been computed and presented in Figures 5–7. It is observed (Figure 5) that
(a) the maximum values of p̃ lies slightly downstream of the maximum channel cross-section
and (b) the amplitude of p̃ increases with increase in volume fraction density, the e�ect of
C=0:5 changes maximum of p̃ from 0.4 to 0.5 (Figure 5(c) and (d)). Figure 6 shows the
variation of velocities in a rigid wavy channel for C=0:5. Figure 7 shows the variation of �̃
in a rigid wavy channel. It is observed that the maximum value of �̃ increases with increase in
volume fraction density. This is because of the increase in suspension viscosity with increase
in volume fraction density.

3.1.1. E�ect of Re and �. The magnitude of wall shear stress, �w, is important in many
applications. The e�ects of the Reynolds number, Re, amplitude parameter, �, volume fraction
density, C, of the particles on the wall shear stress have been examined. Figure 8 presents
�w for rigid channel (!=0) with �=0:1 and �=1:0 for various values of Re and C. Results
for �=0:2 and 0.3 show similar trends. It is observed that (i) for C=0, the peak value
of �w occurs very slightly upstream of the maximum channel cross-section. With increase
in Reynolds number, the peak shifts towards upstream and the pro�les at higher Reynolds
number display increasing asymmetry. The pro�les for Reynolds number greater than 50 show
a negative peak towards the end of the channel. The magnitude of the peak increases with
Re. These results are same as those of Selvarajan et al. [8] and (ii) for C=0:3, the pro�les
are similar to those of C=0. However, the magnitudes of the peak values are higher on the
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Figure 3. Amplitude function of the perturbed velocities for the wavy channel �ow for two volume
fraction densities, Re=150; �=1; �=0:1.
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Figure 4. Variation of perturbed velocities for rigid wavy channel �ow: Re=150, �=1:0; �=0:1, !=0,
C=0:5: (a) mesh plot of ũf ; (b) mesh plot of ṽf ; (c) contour plot of ũf ; and (d) contour plot of ṽf .

positive and on the negative sides. The pro�le shows the negative peak even at Re=50 and
(iii) for C=0:5, the positive and negative peaks are increased further. With increase in �, the
peak values of wall shear stress increase.
In the case of two-dimensional �ow through a rigid channel, the separation and reattachment

points are the locations where the shear stress on the wall is zero. Further, the value of
Reynolds number for which the �ow just separates is called the critical Reynolds number,
Recr. For �= 0:1, the shear-stress variation is negative and the �ow is attached for Reynolds
number below 600 when C=0, whereas for C =0:3 and 0.5, the �ow is attached only
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Figure 5. Variation of perturbed pressure, p̃ for the �ow in a rigid wavy channel: Re=150,
�=1:0, !=0, �=0:1: (a) mesh plot of p̃ for C=0:0; (b) mesh plot of p̃ for C=0:5;

(c) contour plot of p̃ for C=0:0; and (d) contour plot of p̃ for C=0:5.

below Re=425 and 350, respectively (Figure 8). It is observed that (i) for �=0:2, the �ow
is attached only when Re is less than 50 for C=0. On the other hand, for C=0:3 and 0.5,
Recr is equal to 38 and 30, respectively and (ii) for �=0:3, Recr = 10, 5 and 3 for C=0, 0.3
and 0.5, respectively. Figure 9 shows the positions of separation and reattachment points for
�=0:1; 0:2 and 0.3 when C=0:0; 0:3; 0:5. Figure 10 shows the variation of the Recr with �
and C. It is observed that with the increase of �, the critical Reynolds number decreases for
a �xed value of C. With the increase of volume fraction density of the particles, a further
decrease in the critical Reynolds number is seen.
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Figure 6. Variation of velocities for the �ow in a rigid wavy channel: Re=150, �=1:0, �=0:1, !=0,
C=0:5: (a) mesh plot of uf ; (b) mesh plot of vf ; (c) contour plot of uf ; and (d) contour plot of vf .

3.2. Numerical solution for wave-excited channel �ow of particulate suspension

3.2.1. Development of asymmetry at low Reynolds numbers. In their study on peristaltic
motion of Newtonian viscous �uid at low Reynolds numbers, Burns and Parkes [1] observed
that the velocity pro�les are symmetric about x-axis at all cross-sections. However, Selvarajan
et al. [8] have been able to show the development of asymmetry at Re=0:6. They have
observed that the �ow �eld gains symmetry as Re approaches the value of 0.001 and their
results agree well with those of Burns and Parkes [1] for this Re. They attributed the failure of
Burns and Parkes [1] model in not observing asymmetry to the neglect of inertia e�ects in their
study. However, the formulation by Selvarajan et al. [8] has permitted the numerical solution
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Figure 7. Variation of shear stress, �̃ for the �ow in a rigid wavy channel: Re=150,
�=1:0, �=0:1, !=0: (a) mesh plot of �̃ for C=0; (b) mesh plot of �̃ for C=0:5;

(c) contour plot of �̃ for C=0; and (d) contour plot of �̃ for C=0:5.

for peristaltic motion in the limit Re → 0 while retaining the inertia terms. To examine this
for �ow with particulate suspension, computations with �=0:1; �=0:25; !=4�; C=0:0 and
0.3 were carried out at Re=0:025, 0.15 and 0.6. Table I shows the variations of centreline
velocity, uf along x-axis. The computated results for Re=0:6 and 0.15 reveal the development
of asymmetry in the channel for both C=0 and 0.3. It is interesting to note that at low Re
of 0.025 values of uf show symmetry and are almost identical for C=0 and 0.3.
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of volume fraction density in the wavy channel �ow, �=1:0.

Table I. Variation in centreline velocity uf of the �uid phase with Reynolds number for
di�erent volume fraction densities, � =0:1; �=0:25 and ! =4�.

Re=0:6 Re=0:15 Re=0:025

x(rad) c=0:0 c=0:3 c=0:0 c=0:3 c=0:0 c=0:3

0 −0.1215 −0.1180 −0.1273 −0.1275 −0.1278 −0.1277
0.7854 −0.0687 −0.0641 −0.0810 −0.0815 −0.0840 −0.0838
1.5708 0.0360 0.0389 0.0245 0.0238 0.0207 0.0209
2.3562 0.1312 0.1309 0.1272 0.1269 0.1249 0.1250
3.1416 0.1613 0.1578 0.1671 0.1673 0.1676 0.1676
3.9270 0.1085 0.1039 0.1288 0.1213 0.1238 0.1236
4.7124 0.0038 0.0009 0.0153 0.0159 0.0191 0.0189
5.4974 −0.0915 −0.0911 −0.0874 −0.0871 −0.0851 −0.0852
6.2832 −0.1215 −0.1180 −0.1273 −0.1275 −0.1278 −0.1277

Comparison of the contour plots (not shown) of �uid velocity, particle velocity and pressure
contours at Re=0:025 and 0.6 show the distortions due to asymmetry at Re=0:6 as observed
by Selvarajan et al. [8].

3.2.2. Variations in �ow variables with frequency. In order to show the e�ects of frequency
! and C in a wave-excited channel, the amplitude functions of perturbed velocities and the
maximum shear stress and pressure at the wall are computed for di�erent values of C and !.
Figure 11 presents the e�ect of !. It is seen that with increase in !, for �xed values of Re
and C, the amplitude functions of perturbed velocities decrease. The values of parameters are
chosen to facilitate comparison of the present results with those of Selvarajan et al. [8] for
the Newtonian model. Figure 12 presents the amplitude functions of the perturbed velocities
for both the �uid and particulate phases for di�erent values of C, namely, 0; 0:3 and 0.5,
with Re=150, �=0:1; �=1:058; !=0:4. It is observed that the variations in the peaks of
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Figure 11. Amplitude function of the perturbed velocities for the wave-excited channel �ow for di�erent
frequencies of wave excitation, Re=150; �=0:1; �=1:058 and C=0:5.

ûfr ; ûpr ; v̂fi, and v̂pi are very small, whereas the peaks of v̂fr ; v̂pr ; û�, and ûpi decrease as C
increases. Figure 13 shows the variations of pressure perturbation and shear stress at the wall
with the frequency ! and the wave number � for C=0:0; 0:3 and 0.5, with Re=1000. It is
observed that (i) for C=0, the �w(max) has a minimum at !=0:2, whereas when C=0:3 and
0.5, the minimum �w(max) occurs at !=0:3. Subsequently, the value of �w(max) increases with
increase in ! in all cases (Figure 13(a)) and (ii) with increase in !, the p̃w(max) remains
nearly constant for C=0 and 0.3, whereas for C=0:5, it increases linearly (Figure 13(b)).
To examine this increase in p̃w(max), computations were repeated for C between 0.2 and 0.5
at smaller intervals which reveal the rapid increase between C=0:3 and 0.5 (Figure 14)
and (iii) for C=0, the �w(max) has a minimum at �=0:3, whereas for C=0:3 and 0.5, the
�w(max) is minimum at �=0:2. Subsequently, it increases till �=0:6 and then decreases again
(Figure 13(c)) and (iv) the p̃w(max) increases with increase in C for �xed values of � and
! and has maximum value when �=0:2. It decreases after �=0:2 and remains constant for
a �xed value of C (Figure 13(d)).
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û p
r
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Figure 12. Amplitude function of the perturbed velocities for the wave-excited channel �ow for di�erent
volume fraction densities, Re = 150; �=1:058; !=0:4 and �=0:1.
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4. CONCLUSION

Continuum equations governing the two-phase particulate suspension �ow are developed and
the �ow of particulate suspension in wave-excited channel is investigated using a combination
of a perturbation approach and numerical simulation. The mathematical model considered in
the present study incorporate the e�ects of �nite particulate volume fraction. The constant
volume fraction assumption employed in the study allows the governing equations for the
base �ow to be solved analytically. The solutions for the wave-excited channel �ow are
obtained as a perturbation from the parabolic velocity pro�le of the fully developed particulate
suspension �ow in a straight channel. The computational results obtained for the �ow in a
rigid wavy channel agree with the available results for the Newtonian �ows.
For rigid wavy channel, the change of volume fraction density does not signi�cantly a�ect

the �uid and particulate velocities. However, the pressure perturbation and wall shear stress
are a�ected signi�cantly. The amplitude of pressure perturbation increases with increase in
volume fraction density.
With regard to the wall shear stress (�w), the following is observed. For C=0, �w is

negative for low values of Re. As Re increases, the negative peak in the trough region be-
comes more negative and less negative in the crest region. The Reynolds number at which
the value in the crest region becomes zero is the critical Reynolds number (Recr). For the
particulate suspension �ow (C¿0), the values of �w at low Re are more negative than
those C=0. However as Re increases the increase in the crest value is more rapid, when
C¿0. Hence the Recr is lowered as C increases. As waviness increases, the Recr decreases
further.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:235–259



258 R. USHA, S. SENTHILKUMAR AND E. G. TULAPURKARA

For the �ow through wave-excited channel, the amplitude functions of di�erent velocities
decrease with increase in !. The amplitude functions decrease further with volume fraction
density.
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